next up previous contents index
Next: Appendix A Up: The Zimm chain Previous: Normal coordinates and the

Diffusion coefficient and viscosity

The diffusion coefficient  of a Zimm chain can be easily calculated from Eqs. (7.16) and (7.17). The result is

DG = $\displaystyle \frac{kT}{2}\frac{\mu _{00}}{N+1}=\frac{kT}{6\pi \eta b}\sqrt{\fr...
...}
\frac{1}{(N+1)^{2}}\sum_{n=0}^{N}\sum_{m=0}^{N}\frac{1}{\vert n-m\vert^{1/2}}$ (7.19)
  $\textstyle \approx$ $\displaystyle \frac{kT}{6\pi \eta b}\sqrt{\frac{6}{\pi }}\frac{1}{N^{2}}
\int_{0}^{N}dn\int_{0}^{N}dm\frac{1}{\vert n-m\vert^{1/2}}$ (7.20)
  = $\displaystyle \frac{8}{3}\frac{kT}{6\pi \eta b}\sqrt{\frac{6}{\pi N}}$ (7.21)

The diffusion coefficient now scales with N-1/2, in agreement with experiments.

In order to calculate the intrinsic viscosity  of a dilute solution of Zimm chains we go back to Eq. (6.64):

 \begin{displaymath}\frac{d}{dt}\langle X_{kx}(t)X_{ky}(t)\rangle =-\frac{2}{\tau...
..._{ky}(t)\rangle +\dot{\gamma}\langle X_{ky}(t)X_{ky}(t)\rangle
\end{displaymath} (7.22)

Again we shall approximate $\langle
X_{ky}(t)X_{ky}(t)\rangle $ by its equilibrium value. At the end of this section we shall show that

 \begin{displaymath}\langle X_{ky}X_{ky}\rangle _{\mathrm{eq}}=kT\frac{\mu _{kk}}{N+1}\frac{\tau
_{k}}{2}
\end{displaymath} (7.23)

The solution of Eq. (7.22) with this approximation is

 \begin{displaymath}\langle X_{kx}(t)X_{ky}(t)\rangle =kT\frac{\mu _{kk}}{N+1}\le...
...rac{\tau
_{k}}{2}\right) ^{2}(1-e^{-2t/\tau _{k}})\dot{\gamma}
\end{displaymath} (7.24)

Eqs. (6.53), (6.57) and (7.24) then yield

\begin{displaymath}\lbrack \eta ]=\frac{N_{Av}}{M}12\pi \left\{ \frac{(N+1)b^{2}}{12\pi }
\right\} ^{3/2}\sum_{k=1}^{N}\frac{1}{k^{\frac{3}{2}}}
\end{displaymath} (7.25)

The intrinsic viscosity scales with N3/2, in agreement with experiments.

We finish this section by proving Eq. (7.23). At equilibrium we have

 
0 = $\displaystyle \frac{d}{dt} \langle X_{ky}(t) X_{ky}(t) \rangle_{\mathrm{eq}}$ (7.26)
  = $\displaystyle -\frac{2}{\tau_k} \langle X_{ky}(t) X_{ky}(t) \rangle_{\mathrm{eq}} +
2 \langle F_{ky}(t) X_{ky}(t) \rangle_{\mathrm{eq}}$ (7.27)

The last term here can be calculated according to
 
$\displaystyle \langle F_{ky}(t) X_{ky}(t) \rangle$ = $\displaystyle \int_0^t d\tau
e^{-(t-\tau)/\tau_k} \langle F_{ky}(t) F_{ky}(\tau) \rangle$ (7.28)
  = $\displaystyle \frac{1}{2} \int_{-\infty}^{\infty} d\tau e^{-\vert t-\tau\vert/\tau_k}
\langle F_{ky}(t) F_{ky}(\tau) \rangle$ (7.29)

Eq. (7.27), (7.29) and (7.17) yield Eq. ( 7.23).


next up previous contents index
Next: Appendix A Up: The Zimm chain Previous: Normal coordinates and the
W.J. Briels