next up previous contents index
Next: The Gaussian chain Up: Integral equations for polymer Previous: Polymer RISM

Appendix A

According to Eq. (2.37)

\begin{displaymath}\omega (r)=\frac{1}{N+1}\sum_{\alpha }\sum_{\beta }\Omega _{\alpha \beta }(r)
\end{displaymath} (2.39)

From the discussion at the end of section 2.4 it follows
$\displaystyle \hat{\Omega}_{\alpha \beta }(k)$ = $\displaystyle \int d^{3}re^{i\vec{k}\cdot \vec{r}
}\Omega _{\alpha \beta }(r)$  
  = $\displaystyle \delta _{\alpha \beta }+(1-\delta _{\alpha \beta })\int d^{3}re^{i\vec{k
}\cdot \vec{r}}\Omega _{\alpha \beta }(r)$  
  = $\displaystyle \delta _{\alpha \beta }+(1-\delta _{\alpha \beta })2\pi \int_{0}^...
...rr^{2}\Omega _{\alpha \beta }(r)\int_{-1}^{1}d(\cos \theta )e^{ikr\cos
\theta }$  
  = $\displaystyle \delta _{\alpha \beta }+(1-\delta _{\alpha \beta })4\pi \int_{0}^{\infty
}drr^{2}\Omega _{\alpha \beta }(r)\frac{\sin kr}{kr}$  


\begin{displaymath}\hat{\Omega}_{\alpha \beta }(k)=\delta _{\alpha \beta }+(1-\d...
...le \frac{\sin kr_{\alpha \beta }}{kr_{\alpha \beta }}\rangle .
\end{displaymath} (2.40)

The average may be calculated using the methods of Chapter 1. Usually it is a good approximation to describe $\hat{\Omega}_{\alpha \beta }(k)$ with a damped sine function
$\displaystyle \hat{\Omega}_{\alpha \beta }(k)$ = $\displaystyle \frac{\sin (B_{\alpha \beta }k)}{
B_{\alpha \beta }k}\exp \{-A_{\alpha \beta }^{2}k^{2}\}$  
$\displaystyle A_{\alpha \beta }^{2}$ = $\displaystyle \frac{1}{6}\langle r_{\alpha \beta }^{2}\rangle
(1-C_{\alpha \beta })$  
$\displaystyle B_{\alpha \beta }^{2}$ = $\displaystyle \langle r_{\alpha \beta }^{2}\rangle C_{\alpha
\beta }$  
$\displaystyle C_{\alpha \beta }^{2}$ = $\displaystyle \frac{1}{2}\left\{ 5-3\frac{\langle r_{\alpha \beta
}^{4}\rangle }{\langle r_{\alpha \beta }^{2}\rangle ^{2}}\right\} .$ (2.41)

From Fig. (1.3) we conclude that $c_{\alpha \beta }=0$ for $
\vert\alpha -\beta \vert\geq 1000$, in which case $\hat{\Omega}_{\alpha \beta }(k)$is a simple Gaussian.


next up previous contents index
Next: The Gaussian chain Up: Integral equations for polymer Previous: Polymer RISM
W.J. Briels