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We investigate the shear-induced structure formation of colloidal particles dissolved in non-
Newtonian fluids by means of computer simulations. The two investigated visco-elastic fluids are
a semi-dilute polymer solution and a worm-like micellar solution. Both shear-thinning fluids contain
long flexible chains whose entanglements appear and disappear continually as a result of Brown-
ian motion and the applied shear flow. To reach sufficiently large time and length scales in three-
dimensional simulations with up to 96 spherical colloids, we employ the responsive particle dynam-
ics simulation method of modeling each chain as a single soft Brownian particle with slowly evolving
inter-particle degrees of freedom accounting for the entanglements. Parameters in the model are cho-
sen such that the simulated rheological properties of the fluids, i.e., the storage and loss moduli and
the shear viscosities, are in reasonable agreement with experimental values. Spherical colloids dis-
persed in both quiescent fluids mix homogeneously. Under shear flow, however, the colloids in the
micellar solution align to form strings in the flow direction, whereas the colloids in the polymer solu-
tion remain randomly distributed. These observations agree with recent experimental studies of col-
loids in the bulk of these two liquids. © 2011 American Institute of Physics. [doi:10.1063/1.3633701]

I. INTRODUCTION

The response of a Newtonian liquid to shear deformation
is to develop a stress proportional to the applied shear rate.
Non-Newtonian fluids, in contrast, display a variety of more
complex stress versus rate-of-strain relationships. For exam-
ple, they can have elastic properties, have long-lived mem-
ories of earlier states, or have an apparent viscosity that de-
pends on how fast you shear them. Such fluids have many
practical uses, e.g., as industrial lubricants, as drilling and
fracturing fluids that improve oil recovery from oil wells, and
as thickeners in the paint and food industry.1 Non-Newtonian
fluids are also important in biology: a well-known non-
Newtonian fluid is blood. In this paper we present simulations
of shear-thinning liquids, i.e., fluids whose apparent viscosi-
ties decrease with increasing shear rate, and study the order-
ing of dispersed solid particles in these fluids under shear.

Colloidal particles in sheared viscoelastic fluids are fre-
quently observed to spontaneously form colloidal chains
along the flow direction, depending on the fluid’s flow char-
acteristics, applied shear rate and boundary conditions, while
this behavior is not observed in simple Newtonian fluids. This
poorly understood phenomenon was already reported in 1977
by Michele et al.2 and confirmed a decade ago by Lyon et al.3

In these studies it was suggested that colloidal alignment ap-
pears when the Weissenberg number, defined as the ratio of
first normal stress difference to shear stress, is larger than
10. Subsequent work by Scirocco et al.4 and Won and Kim5

showed that this critical Weissenberg number is not univer-
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sal. These studies also established that viscoelasticity is not
a sufficient condition for structure formation, since alignment
is not observed in viscoelastic Boger fluids.4, 5 Instead, these
authors suggested that shear-thinning is a necessary condi-
tion for shear-induced alignment of spherical particles. The
recent work of Pasquino et al.6 on dilute suspensions of hard
spheres in a worm-like micellar solution showed the forma-
tion of string-like structures at low shear rates and 2D crys-
tals at high shear rates. For a review on flow-induced ordering
in complex fluids, we refer the reader to Malkin et al.7 The
Vermant group8 has recently shown that alignment typically
occurs at the walls of the rheometer, following colloidal mi-
gration from the bulk towards these walls. Worm-like micellar
solutions are exceptional by producing alignment in the bulk.
Here, our focus will be on (dis)ordering of colloids in bulk
viscoelastic fluids.

There is much practical interest in gaining control over
the arrangement of particles embedded in fluids. For example,
Manski et al.9 suggested that controlled structuring is very
useful in food engineering. It is, therefore, important to gain
more insight into the still poorly understood process of col-
loidal structuring under flow. Here, we show how advances in
computer simulation methods offer new possibilities to obtain
such insights. The problem of simulating colloids dispersed in
viscoelastic fluids has been considered before by a number
of groups, using lattice methods and Stokesian approaches
to calculate flow fields subject to the boundary conditions
posed by the colloids. Feng et al.,10 Binous and Phillips,11

Harlen,12 Yu et al.,13 and Ardekani et al.14 simulated one and
two spheres sedimenting through a viscoelastic fluid. Hwang
et al.15 studied kissing and tumbling of two colloids in shear
flow and observed strong shear-induced elongational flows
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between six colloids. Patankar and Hu16 simulated the mi-
gration of a colloid towards the centerline of a channel in
a pressure-driven flow. D’Avino et al.17–19 analyzed the ro-
tation of a particle in a sheared viscoelastic liquid, and the
shear-induced migration of a particle towards a wall. Flow-
induced aggregation of a dozen colloids in a viscoelastic so-
lution was simulated by Yu et al.13 for sedimenting particles
and by Phillips and Talini20 and Hwang and Hulsen21 for sus-
pensions exposed to a shear flow. We note that these studies
have in common that the three-dimensional calculations have
been limited to one and two colloidal particles in a viscoelas-
tic fluid, while simulations with up to a dozen colloids were
all restricted to two dimensions.

In this paper, we show that the particle-based off-lattice
responsive particle dynamics (RaPiD) method22, 23 efficiently
simulates various viscoelastic fluids, is easily applied to flu-
ids containing many colloids, and thereby makes possible the
computational study in three dimensions of colloidal ordering
under shear flow. To study the effect of the viscoelastic fluid
on the alignment in the bulk, we study three-dimensional dis-
persions of up to 96 spherical colloids in two distinct shear-
thinning viscoelastic solutions. One fluid models a solution
of polyisobutylene (PIB) dissolved in pristane, with polymers
of molecular weight Mw = 1.2 × 103 kg/mol. The second
fluid models a worm-like micellar solution of cetylpyridini-
umchloride (CPyCl) and sodiumsalicylate (NaSal) in salt wa-
ter, at concentrations of 100 mM and 60 mM, respectively. In
Section II, we describe how these fluids are simulated using
the RaPiD method. In Section III, we show that the RaPiD
model is able to reproduce the experimental bulk rheological
properties of both fluids24 reasonably well. Spherical particles
are immersed in these fluids in Section IV, and the dispersions
are next subjected to shear flow to study the resulting order-
ing, or lack of ordering, of the colloids. The main conclusions
are summarized in Section V.

II. SIMULATION METHOD

A. Background

To reach the large time and length scales required in
simulations of colloidal ordering, we will coarse-grain en-
tire polymer chains and worm-like micelles to single parti-
cles. Each polymer and micelle is represented by just the
position of its center-of-mass. This is not to say that all the
removed coordinates are irrelevant for the rheology of the
system. On the one hand, the eliminated coordinates provide
the free energy function �C , the so-called potential of mean
force, which governs the equilibrium distribution of the Np

centers of mass. In thermodynamic equilibrium, the proba-
bility distribution Peq (r) of the center-of-mass positions r is
given by

Peq (r) ∝ exp [−β�C (r)] , (1)

where β = 1/kBT is the inverse of the thermal energy,
with Boltzmann’s constant kB and temperature T . On the
other hand, the removed coordinates give rise to friction and
random forces in the equations of motion for the retained
coordinates.25, 26 In most coarse-grain representations of soft

matter systems, these frictions and random forces necessar-
ily have “memory” of the configurations the system has gone
through in the recent, and sometimes even the distant past.23

For example, when describing polymeric systems on the level
of their centers of mass, as we do here, the friction and ran-
dom forces must effectively represent all important effects
caused by the entanglements; a simple Brownian dynamics
propagator with realistic mean forces and Markovian random
displacements will not reproduce representative paths of the
retained coordinates. To circumvent the introduction of mem-
ory effects in the friction forces and stochastic displacements,
we employ the RaPiD method.22, 23

The idea behind the RaPiD method is to introduce a rel-
atively small set of additional dynamic variables which keep
track, in a coarse-grained manner, of the thermodynamic state
of the eliminated coordinates. Deviations of these additional
variables from their equilibrium values, with the latter being
determined by the configuration r of the retained coordinates,
give rise to additional forces acting on the retained coordi-
nates, on top of the thermodynamic forces derived from the
potential of mean force. In the RaPiD method, these addi-
tional non-equilibrium forces are specifically designed with
the propensity to resist deformation of the configuration r , by
driving the system back to its earlier state, while at the same
time these forces slowly fade away as the additional variables
relax toward their new equilibrium values for the new con-
figuration. This particular combination of characteristics, i.e.,
the transient resistance to deformation, endows the simulated
fluid with a viscoelastic behavior. In the current study of semi-
dilute polymer and worm-like micellar solutions at nearly 15
times the critical overlap concentration, the dominant phys-
ical mechanism giving rise to viscoelastic behavior is the
entanglement of the chains; the additional transient forces
will therefore also be referred to as the entanglement forces.
The versatility of the RaPiD method is illustrated by suc-
cessful applications to fluids as diverse as solutions of poly-
meric core-shell colloids,27 highly entangled polymer melts,28

telechelic polymer networks,29 solutions of star polymers,30

and glue,31 and its ability to simulate flow phenomena ranging
from shear thinning,22 shear banding27 and shear fracture32 to
microscopic phase separation and lamellar re-orientation un-
der shear.33

B. Conservative forces

The configurational free energy �C of a semi-dilute so-
lution of polymeric or worm-like micellar chains is conve-
niently described by the Flory-Huggins (FH) theory.34, 35 We
adapt the FH model here, following Kindt and Briels,28 to cal-
culate the local free energy subject to the given center-of-mass
positions of the chains; this free energy takes into account all
possible configurations of the monomers in the chains and of
the solvent. It will be assumed that this local free energy can
be expressed as a function of the local number density of poly-
mers. During the simulation, the local number density around
a specific polymer i is calculated as

ρi =
Np∑
j=1

ω(rij ), (2)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



104902-3 Shear alignment in viscoelastic fluids J. Chem. Phys. 135, 104902 (2011)

where Np is the number of chains (polymers or worms) in
the system and ω(r) is a suitably normalized weight function.
There is no rigorous way to define this weight function, but
some demands should be satisfied. The weight as a function
of the distance to the chain’s center will be a monotonously
decreasing function. The weight function must have a non-
zero derivative at the origin, otherwise the vanishing repulsive
forces at very short distances do not prevent the formation of
clusters. To avoid discontinuities in the force at the cut-off ra-
dius rc, the weight function and its first derivative should go
to zero smoothly. We use simple linear and quadratic expres-
sions to satisfy these demands,

ω(rij ) =

⎧⎪⎨
⎪⎩

c(rc − rs)(rc + rs − 2rij ) ; rij≤ rs

c(rij − rc)2 ; rs <rij≤ rc

0 ; rc <rij ,

(3)

where rs denotes the distance where the weight function
switches from linear to quadratic, and c is a normalization
constant chosen such that

∫
ω(rij )dr = 1. Because the range

of chain-chain interactions is of the order of the chain ra-
dius of gyration Rg , we choose rc = 2.5Rg and rs = Rg . We
note that there is no conservation law associated with the lo-
cal densities ρi , i.e., 〈ρi〉 �= ρ in general, where ρ = Np/V is
the box-averaged number density. Nevertheless, ρi provides a
reasonable measure for the local polymer number density at
the position of polymer i.

The local polymer volume fraction φi entering the Flory-
Huggins free energy expression may now be defined as

φi = ρi

ρmax
, (4)

where ρmax defines the maximum local polymer density, i.e.,
the density of a solvent-free polymer melt and, therefore,
φi ≤ 1. Using the procedure described in the Appendix, we
can approximate the total free energy of the system, for a
given configuration r , as a sum of particle contributions,

�C =
Np∑
i=1

ap(φi), (5)

where the free energy per chain ap(φi), as a function of the
local chain density, reads as

ap(φi) = pkBT

{
1 − φi

φi

ln(1 − φi) − χφi

}
. (6)

Here p is the number of Kuhn segments in the chain and χ

is the usual Flory-Huggins parameter as defined in Eq. (A5).
The resulting thermodynamic forces acting on the particles
are readily derived by differentiating Eq. (5), as is shown in
the Appendix. We note that the denominator to the fraction in
Eq. (6) will never be zero, by virtue of the self-term in Eq.
(2); besides this, the limit of ap(φi) when φi approaches zero
is constant.

C. Transient forces

We now turn our attention to the transient forces, which
were already qualitatively introduced at the start of this sec-
tion. The motion of a chain in a polymer solution (or in a

worm-like micellar solution) is slowed down predominantly
by entanglements with neighboring chains. The correspond-
ing transient forces are approximately included in the RaPiD
method by introducing an additional variable nij for every
close pair of chains i and j . This additional variable will be
referred to as the number of entanglements that exist between
this pair of chains, but we note that any type of chain intermix-
ing that slows down the dynamics is included. The entangle-
ment force between particles i and j will be assumed linear
in the deviation of the entanglement number from the equilib-
rium number of entanglements n0(rij ) for the given distance
between the two particles. The “entanglement potential” be-
hind the entanglement force is then given by

�t (r, n) = 1

2
α

∑
i,j

(nij − n0(rij ))2, (7)

where α determines the variance of the fluctuations in nij and
the sum runs over all neighboring particle pairs. The equilib-
rium entanglement number n0(rij ) depends on the probabil-
ity of having monomers of the two chains in close proximity,
i.e., n0 is proportional to the overlap of two chains. For Gaus-
sian chains, the distribution of monomers around the center
of mass of a chain is approximately a Gaussian distribution36

and the overlap is again an approximately Gaussian function
of the separation between the centers of mass.37 However, to
avoid zero forces at short distances, we choose to represent
n0(rij ) not by a Gaussian but by a good fitting quadratic func-
tion that, furthermore, smoothly vanishes at the cut-off radius,

n0(rij ) =
⎧⎨
⎩

(
rij

rc

− 1

)2

; rij ≤ rc

0 ; rij > rc.

(8)

Because nij and n0(r) always appear in combination with α

in the entanglement force and potential, we are free to choose
a suitable normalization for n0, and hence nij , while retaining
α as a fit parameter of the model. We have chosen n0 = 1 at
r = 0, and consequently n0(r) may loosely be interpreted as
the fraction of maximum overlap.

Given the conservative and entanglement potentials, the
equilibrium probability density 	 to encounter a certain con-
figuration r in combination with a set of entanglement num-
bers n reads as

	 (r, n) ∝ exp {−β [�C(r) + �t (r, n)]}. (9)

One readily shows that integration over n, exploiting the
quadratic structure of �t , recovers the equilibrium probability
density of Eq. (1). We, therefore, conclude that the entangle-
ment forces alter the dynamical properties of a fluid but not
its thermodynamical properties. This property will be used be-
low to show that variations in the dynamical properties alone
suffice to generate markedly different alignment behavior.

D. Equations of motion

Having defined the potential, the displacement of particle
i over a simulation time step dt on the Smoluchowski time
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scale is given by22, 23

dri = − 1

ξi

(∇i�C + ∇i�t ) dt

+∇i

(
kBT

ξi

)
dt + �i

√
2kBT dt

ξi

. (10)

The first term on the right-hand side is the contribution
of conservative and entanglement forces, with the particle-
dependent friction parameter ξi to be discussed below. The
middle term corrects for a spurious drift that would other-
wise have resulted in a finite time step algorithm from the
non-constancy of the friction coefficient. The last term de-
scribes Brownian displacements of the particles, where the
components of the time-dependent Markovian random vec-
tor �i have unit variance and zero mean, the three Cartesian
components are independent and the set of vectors is devoid
of inter-particle correlations. Since the friction experienced
by a chain is mainly due to entanglements, we assume that
the friction coefficient of particle i is proportional to the ac-
tual number of entanglements of particle i with its neighbors,

ξi = ξ0 + ξe

∑
j �=i

√
nijn0(rij ), (11)

where ξe is the friction per entanglement and ξ0 is the back-
ground friction by the solvent. By taking the geometric av-
erage of nij with the equilibrium number of entanglements
n0(rij ), we ensure that the entanglement friction between par-
ticles smoothly ceases at the cut-off distance rc.

The equation of motion for the entanglement number nij ,
again on the Smoluchowski time scale, is given by22, 23

dnij = 1

τ
(n0(rij ) − nij )dt + �ij

√
2kBT dt

ατ
. (12)

In the last term on the right-hand side, �ij is a time-dependent
random Markovian scalar with zero mean, unit average, and
without correlation across particle pairs. For convenient in-
terpretation, the friction coefficient slowing down the entan-
glement dynamics has been expressed here as ατ , where τ

denotes the characteristic relaxation time. We expect the col-
lective entanglements between two chains in close proximity
to be of a more severely interwoven nature than those between
two distant weakly entwined chains, and therefore the former
will take longer to relax than the latter. To take this effect into
account, we let the relaxation time depend on the distance be-
tween the particles,

τij = τ0 exp
(
− rij

λ

)
, (13)

where τ0 is a time constant and λ denotes the decay length of
the relaxation time.

All simulations are performed in rectangular boxes of
fixed dimensions, using periodic boundary conditions.38 In a
large number of simulations, a shear flow is applied along the
x-direction, with a velocity gradient γ̇ in the y-direction, by
using Lees-Edwards sliding boundary conditions38 in com-
bination with a slightly modified equation of motion. Every
time step, the instantaneous flow field in the x-direction is de-
termined for a set of planes at equally spaced heights along

the y axis, by attributing the displacements of each particle
to its two surrounding planes by a lever-rule. This noisy flow
field is then smoothed by averaging over the flow field his-
tory, at every height, using an exponentially decaying weight
function with a decay time τflow = 10−3 s, to obtain the fluid
velocity function V (y). By re-deriving the equations of mo-
tion, with particle i now experiencing a friction relative to the
flow field at height yi , the displacement in Eq. (10) acquires
the additional term +V (yi)êxdt . This approach has been ap-
plied successfully in the earlier RaPiD simulations, see, e.g.,
Refs. 29, 39, and 40. and proved sufficiently flexible to permit
shear banding and shear fracture. We emphasize the absence
of walls in these simulations, which consequently faithfully
reproduce bulk shear flow.

III. TWO SHEAR-THINNING FLUIDS

A. Model parameters

The above described RaPiD method was applied to sim-
ulate two distinct shear-thinning viscoelastic fluids. As the
first fluid, we studied a polymer solution of a high molecular
weight PIB (Mw = 1.2 × 103 kg/mol) dissolved in pristane;
this mixture, and behavior of colloids dispersed in this fluid,
was the subject of recent experiments by Snijkers et al.24

These experimental data guided the parameterization of the
simulation model, as summarized in Table I. The table is di-
vided in the “set parameters,” listing experimentally known
quantities, and the “simulation parameters,” the fitting param-
eters established to reproduce the experimental rheology of
the fluid. In particular, we tuned α, ξe, τ0, and λ for agreement
with the experimental zero shear viscosity η0 and the storage
and loss moduli G′(ω) and G′′(ω), which will be discussed in
Section III C.

As the second fluid, we studied a worm-like micellar
solution modeled after an experimental mixture of 100 mM
CPyCl and 60 mM NaSal in salt water. To parameterize the
fluid, we took the polymer solution as a reference and ad-
justed only the parameters related to the entanglement forces.
That is, we combined the set parameters of the polymer so-
lution with the new values for α, ξe, τ0, and λ listed at the
bottom of Table I. Since the two fluids are microscopically
very different, it may come at first sight as a surprise that the
potential of mean force �C of the polymer solution has been
used to represent a worm-like micellar solution. It should be
realized, however, that both polymers and worm-like micelles
form long and flexible chains, which reduces the effective in-
teraction between their centers of mass of the chains to a very
soft repulsive potential. Therefore, the conservative interac-
tions between polymers and micellar worms are quite simi-
lar, and both are relatively unimportant to the flow behavior,
which will be dominated by entanglements. Moreover, we are
mainly interested in the rheological effects of each fluid, and
a clearer comparison will be possible if the equilibrium struc-
tures of the two fluids are assumed to be the same.

The transient force parameters of the worm-like solu-
tion, like those of the polymer solution discussed before,
were tuned such that good agreement is obtained with the ex-
perimental zero-shear viscosity η0 and the storage and loss
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TABLE I. The simulation parameters of the polymer solution and the worm-
like micellar solution.

Set parameters
Temperature T = 300K
Radius of gyration Rg = 40nm
Density ρp = 3.5 pol/R3

g

Average volume fraction φ = 0.11 → ρmax/ρ = 9
Flory-Huggins parameter χ = 0.5
Number of monomers p = 2700 mon./polymer
Solvent viscosity ηs = 5 × 10−3 Pa s
Solvent friction ξ0 = 2.45 × 10−9 kg/s

Polymer solution simulation parameters

Cut-off range rc = 2.5 Rg

Density critical radius rs = 1.0 Rg

Entanglement number deviation α = 10 kBT

Entanglement friction ξe = 5 × 10−9 kg/s
Maximum entanglement relaxation time τ0 = 250 s
Decay length of entanglement relaxation time λ = 0.2 Rg

Wormlike micellar solution simulation parameters

Cut-off range rc = 2.5 Rg

Density critical radius rs = 1.0 Rg

Entanglement number deviation α = 0.1 kBT

Entanglement friction ξe = 7 · 10−7kg/s
Maximum entanglement relaxation time τ0 = 200 s
Decay length of entanglement relaxation time λ = ∞

moduli G′(ω) and G′′(ω), which will be discussed in Sec-
tion III C. The resulting changes, compared to the polymer
solution, are a much smaller entanglement strength α and
a much larger entanglement friction ξe. Also, the entangle-
ment relaxation time τ is now truly constant, i.e., τ = τ0

for λ → ∞, in agreement with the observation that a well-
entangled worm-like micellar solution effectively has a single
relaxation time.41–44

B. Structural properties

The simulations with quiescent fluids were carried out for
cubic boxes containing 804 particles in a volume V = 230R3

g .
To analyze the structural properties of the system, we calcu-
lated the radial distribution function g(r) and the structure
factors S(k). Looking at Fig. 1, we observe the absence of
any clear structure in the system, and only a small correlation
hole occurs below distances of the order of Rg . The non-zero
g(r) for small distances indicates that the particles can ap-
proach each other very closely, which reflects the ability of
long flexible chains to coalesce their centers of mass without
generating any overlap at the monomeric scale. The structure
factors S(k), shown in the inset to Fig. 1, confirm the absence
of structure in the polymer center of mass distribution. These
structural results are in agreement with atomistic Monte Carlo
simulations of long linear polymers, e.g., polyethylene.45

Since we used the same conservative potential for both
polymer and worm-like micelles solutions, their equilibrium
results should be the same. Our results confirmed that they are
very similar indeed, and thereby support the comment below
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FIG. 1. Radial distribution function (main plot) and structure factor (inset)
for the polymer solution. The nearly structureless distribution, with a slight
correlation hole below Rg = 40 nm, is typical for the center of mass distri-
bution of long flexible chains. The solution of worm-like micelles yielded
identical curves, as it is based on the same conservative interactions.

Eq. (9) that the transient forces do not perturb the equilibrium
structure of the systems.

C. Dynamic properties

The linear rheology of the model fluids was obtained
from equilibrium simulations by computing the autocorrela-
tion of the shear stress. The relevant component of the shear
stress tensor is given by

Sxy(t) = − 1

V

∑
i,j

(ri,x − rj,x)Fij,y, (14)

with Fij,y denoting the y-component of the force on particle i

due to conservative and entanglement interactions with parti-
cle j . The autocorrelation of the shear stress yields the shear
relaxation modulus,

G(t) = V

kBT
〈Sxy(t)Sxy(0)〉. (15)

Integration of G(t) from t = 0 to ∞ results in the zero-shear
viscosity η0, while the real and imaginary parts of its Fourier
transform yield the storage modulus G′ and loss modulus G′′,

G′(ω) = ω

∫ ∞

0
sin(ωt)G(t)dt, (16)

G′′(ω) = ω

∫ ∞

0
cos(ωt)G(t)dt, (17)

respectively.
The shear-thinning behavior of both fluids was analyzed

by applying shear flow. From the steady-state shear stresses
over a wide range of shear rates, the apparent viscosity was
calculated as

η(γ̇ ) = Sxy(γ̇ )

γ̇
. (18)

The simulation results are discussed next.
The integral of G(t) of the polymer solution yielded a

zero-shear viscosity η0 = 70 Pa s, in close agreement with
the experimental value of 75 Pa s.24 Figure 2 shows that the
storage and loss moduli agree qualitatively with their exper-
imental counterparts, and match the experimental crossover
angular frequency of 20 rad/s. We did not tune the param-
eters of the model any further to get better agreement with
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FIG. 2. Storage modulus G′(ω) and loss modulus G′′(ω) of the polymer so-
lution over a range of frequencies. The black solid lines are simulation results,
obtained as Fourier transforms of G(t), and the red circles denote experimen-
tal results by Snijkers et al. (Ref. 24).

experiments since our goal in this paper is to provide a proof
of principles only. Moreover, the experimental system was
polydisperse, asking for much more elaborate simulations.
The shear viscosity extracted from simulations under shear,
see Fig. 3, is fairly constant for low shear rates up to 1 s−1,
as is the experimental shear viscosity. At high shear rates the
viscosity shows a steady decline—the main characteristic of
a shear-thinning fluid—with the viscosity of the model fluid
decaying slightly steeper than that of the real fluid. We did not
observe shear-banding in the applied range of shear rates.

Equilibrium simulations of the worm-like micellar solu-
tion yielded a zero-shear viscosity of 28 Pa s, in excellent
agreement with the experimental value of 28 Pa s.24 The stor-
age and loss moduli, plotted in Fig. 4, closely follow their
experimental counterparts. The rheological behavior of this
system is well captured by a Maxwell model, as was also re-
ported by Refs. 1 and 44, while the polymer solution shows
the hallmarks of a fluid with a distribution of relaxation times.
Simulations of sheared solutions yielded the shear viscosity
curve of Fig. 5. The plateau at low shear rates and the rate
of decline at high shear rates are in quantitative agreement
with experimental data, though the onset of shear-thinning oc-
curs at a slightly lower shear rate in the simulations. Despite
a shear-thinning exponent of nearly −1, we did not observe
shear-banding for the shear rates used here.
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IV. COLLOIDAL DISPERSIONS

A. Spherical colloids

The viscoelastic fluids of Sec. III were used to sus-
pend spherical colloids, with colloidal radii equal to the ra-
dius of gyration of the polymer and micellar chains, Rcol

= Rg = 40 nm. These colloids are much smaller than the col-
loids used in the recent experiments with dispersions in the
same fluids by Pasquino et al.,6 since the experimental ra-
dius would have led to prohibitively large simulation boxes.
Because of the smaller size, Brownian displacements play
a more important role in the simulations than in the exper-
iments. At a typical shear rate of 15 s−1, corresponding to
Deborah numbers of De = γ̇ τcross = 0.8 and 12 for the poly-
mer and micellar solutions, respectively, the Peclet numbers
are Pe = 6πR3

colγ̇ η(γ̇ )/kBT = 86 and 3, respectively. While
the stronger thermal fluctuations may affect the relaxation
process of the sheared colloidal fluids, we do not expect the
Brownian motion to significantly alter the steady state. From
the below descriptions of the simulations, it indeed emerges
that the smaller colloidal size is of little consequence to the
shear-alignment of the colloids.

The colloid-colloid and colloid-polymer interaction po-
tentials are plotted in Fig. 6 against their respective dis-
tances. For colloid-colloid interactions we choose a relatively
hard potential, scaling as D−8

S with the surface-to-surface
distance DS = r − 2Rcol between a pair of colloids. The
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potentials.

colloid-polymer interaction is based on the previous work
by Bolhuis and Louis,46 who inverted structural information
from simulated sphere-polymer distribution functions. The
exponential form of the potential allows the center of mass
of a polymer or micellar chain to occasionally approach the
center of the colloid to within less than Rcol. This softness
represents the ability of long flexible chains to enlace a col-
loidal particle and thereby to locate its center of mass inside
the colloid.

The motions of the colloids are described by a regular
Brownian dynamics expression. The displacement of colloid
i over a simulation time step dt is therefore similar in nature
to Eq. (10). Since the colloids cannot entangle with the solvent
chains, they are not subjected to entanglement forces and their
friction coefficient is fixed at ξi = ξc = 7 · 10−7 kg/s. Under
shear flow, the friction again acts relative to the prevailing
flow field at the position of the colloid’s center, resulting in
the above discussed displacement contribution +V (yi)êxdt .

B. Preparation of colloidal dispersions

The colloid-polymer potential described in Fig. 6 does
not allow any conclusion about the volumes occupied by the
colloids and excluded to the polymers. We, therefore, do not
know how many polymers should be removed with every col-
loid dispersed in the liquid. In order to calculate this number,
we first ran a simulation with polymers all over the box and
the colloids restricted to a central region measuring about one-
third of the total box volume. The colloids were kept in this
dispersion of volume Vdisp by means of two semi-permeable
walls, as depicted in Fig. 7, that were impermeable to the col-
loids but permeable to the polymers. The lateral box dimen-
sions were gradually adjusted by a barostat-like algorithm,
at fixed positions of the semi-permeable walls, to allow the
polymer density in the two outer regions to equilibrate to the
experimental polymer density ρexp. As a result, the polymer
chemical potential throughout the entire box became equal to
its experimental value. The resulting number of polymers in
the dispersion is by definition equal to

Ndisp
p = ρexp(Vdisp − Ncolvapp), (19)

where Nc is the number of colloids and vapp is the apparent
volume occupied by one colloid. From the simulation, we
found vapp ≈ −0.2R3

g . This volume value is rather different
from the poorly defined volume of ∼ 4

3πR3
c of a colloid with

FIG. 7. Illustration of the simulation box used to find the equilibrium chain
density in the system with colloids. The polymers (gray dots) can pass
through the walls (red lines), while the colloids (blue spheres) are restrained
to the region between the walls. The lateral dimension of the regions external
to the walls is continuously adjusted by a density-based rescaling routine in
order to achieve the desired bulk polymer density in the outer regions.

soft interaction potentials; the small negative value even im-
plies that the dispersion contains slightly more polymers than
an equal volume of polymer fluid at the same chemical po-
tential. The low apparent volume indicates that osmotic pres-
sure of the polymer bath pushes the polymers against the col-
loids and thereby increases their overall density. The radial
distribution function of polymers relative to colloids shows
a peak at a distance of 1.6 Rg , indicating that the polymers
are condensing against the colloids. Since the polymer-colloid
interaction is purely repulsive, this condensation emerges as
a consequence of the inter-polymer Flory-Huggins free en-
ergy. We inserted the value for vapp into Eq. (19) to calcu-
late the appropriate number of polymers for the various col-
loidal suspensions of Secs. IV C–IV D. This procedure en-
abled us to find the correct density in the colloid-polymer
system. Since the apparent volume of the colloid is a thermo-
dynamic property of the interaction potentials, the aforemen-
tioned value obtained for the polymer solution also applies to
colloids dispersed in worm-like micellar solutions. For com-
pleteness, we note that the colloidal ordering discussed below
does not prove sensitive to the polymer density at the pre-
vailing conditions, as very similar results were obtained upon
equating vapp to 4

3πR3
c .

An important observation from the non-sheared simula-
tions is that the colloids remain homogeneously distributed
throughout the suspending fluid. The colloid-colloid radial
distribution function (not shown) shows a first peak just be-
yond the colloidal diameter of 2 Rc, as is usual with hard
sphere systems at intermediate or high densities.

C. Colloids in sheared micellar solutions

The behavior of colloids under shear was first simu-
lated for the solution of worm-like micelles, since this fluid
is known from experiments to induce colloidal alignment in
the bulk.6 In this and all subsequent simulations, the col-
loids were immersed in a rectangular simulation box measur-
ing 24 × 16 × 12R3

g . To facilitate the formation of colloidal
strings, in the expectation that they would occur, the 30 col-
loids of the initial box were placed in a plane spanned by
the shear velocity and the velocity-gradient, i.e., the xy-plane,
taking care to prevent any significant overlap while randomly
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FIG. 8. Snapshots of 30 colloids (blue spheres, volume fraction ϕ = 4
3 πNcolR

3
col/Vbox = 3%), initially distributed over the xy-plane, with the shear flow along

the horizontal x-direction and the velocity-gradient along the vertical y-direction. The pictures show projections on the xy-plane at (a) t = 0 s, (b) t = 0.1 s,
(c) t = 2 s, and (d) t = 4 s after the onset of a γ̇ = 15 s−1 shear in a 3D worm-like micellar solution (gray dots). Side views of this system after 0 and 20 s are
included in Fig. 9.

placing the colloids. The procedure outlined in Sec. IV B was
used to calculate the number of fluid particles filling the re-
maining unoccupied volume of the box. A strong shear flow
of γ̇ = 15 s−1, well beyond the transition to shear-thinning
in Fig. 5, was imposed on the system. In order to reduce
the usual complicating start-up effects at the onset of shear
flow, the simulation was started at t = 0 with the expected
steady state linear fluid velocity V (y) = γ̇ yêx , and then left to
evolve freely. Snapshots from the simulation at various times
are shown in Fig. 8. The first frame shows the initial box,
with the colloids distributed randomly in the xy-plane. The
second and third frames, taken at 0.1 s and 2 s, respectively,
clearly show a gradually increasing degree of ordering. In the
last snapshot, taken after 4 s, the particles have converged to
form strings along five parallel lines in the flow direction; this
set of five lines survived for the next 16 seconds, at which
point the simulation was terminated. Watching movies of this
and similar systems revealed that the colloidal strings are any-
thing but stationary. Besides the obvious convective motion
along the shear direction, the strings repeatedly lose one or
two colloids from their tails, which subsequently are caught
by and become the head of the next string moving along the
same flow line. The microscopy image in Fig. 2(a) of Ref. 6
suggests similar behavior under experimental conditions, as
the photographed strings of colloids resemble trains running
along the same track. The order of the colloids along the flow
line typically stays the same, though we have seen occasions
where a colloid briefly left a string and was overtaken by (part
of) the string before returning to the flow line. The five lines
also performed erratic Brownian motions, thus changing their
vertical spacing and gradually drifting away from the initial
z = 0 plane.

To quantify the degree of colloidal alignment, the area
covered by the colloids in a projection onto the yz-plane was
computed as a function of time. Figure 9 shows how this cov-
ered area initially decreased rapidly, reached a plateau after
around 3 s, and remained essentially constant from this time
onward. The inset displays snapshots at the beginning and end
of the simulation, which clearly show that the system evolved
from a disordered to an ordered configuration. Note that one
colloid, near the bottom of the second snapshot, has escaped
from the xy-plane to wander around on its own.

One may object that the above ordering could be a con-
sequence of our starting with all colloids confined to a single

FIG. 9. The fraction of the yz-plane covered by colloids, as a function of
time, in a worm-like micellar solution sheared at γ̇ = 15 s−1. The 30 colloids
were initially randomly distributed over the xy-plane, as shown in the left
inset. At the end of the 20 s run, the colloids were arranged into five lines, as
is clearly visible in the right inset. Note how one colloid near the bottom of
the box has escaped the xy-plane. Four snapshots showing front views of the
aligning process are shown in Fig. 8.
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FIG. 10. Fractional area of the yz-plane occupied by 80 colloids, ϕ = 7%,
as an initially dispersion in a worm-like micellar solution gradually orders
under a simple shear flow of γ̇ = 15 s−1. The inset displays snapshots in the
yz-plane of the initial (left) and final (right) configurations.

plane. We therefore also performed simulations on a system
containing 80 colloids which were initially placed randomly
throughout the entire box, again taking care to avoid overlap
when generating the configuration. Figure 10 shows the evo-
lution, at a shear rate of γ̇ = 15 s−1, of the yz area occupied
by the colloids as a function of time. The high initial cover-
age of nearly 80% rapidly decreases over the course of about
7 s to a stable level of just under 50%. This decrease is also
evident from the snapshots, shown as insets to the figure, of
the initial and final configurations of the 22 s long simulation.
Interestingly, the final configuration suggests that the strings
of colloids adopt an hexagonal ordering in the yz-plane.

A second method to quantify the alignment of the col-
loids is to count the number of colloidal strings and their
lengths. For particles i and j to qualify as neighboring mem-
bers of the same colloidal string, the difference vector rij be-
tween their centers had to be limited (i) in the flow direc-
tion to |rij,x | ≤ 3Rg , and (ii) in the perpendicular direction
by r2

ij,y + r2
ij,z ≤ (0.5Rg)2. A simple algorithm then grouped

all neighbor-linked colloids together to identify all strings of
at least two colloids. The inset in Fig. 11 shows that, un-
der shear, the 80 randomly distributed colloids grouped into
a steadily growing number of strings, which after about 4 s
reached a steady value at about 18 strings. Of course, the pre-
cise number of colloidal strings varies with the definition of
neighbors, but the overall result clearly confirms the shear-
alignment implied by the reduction of the projected yz-area.
Figure 11 also shows the distribution of colloids over the var-
ious string lengths, at several intervals during the simulation.
The approximate 70 colloids in “strings” of one colloid over
the first second of the simulation confirms that the colloids are
initially randomly distributed. At the intermediate times from
2 s to 3 s and from 4 s to 5 s, the number of free colloids de-
creases as ever more and longer strings are being formed. The
average number of free colloids at the end of the simulation,
from 19 s to 20 s, has reduced by five more colloids, but the
most notable change is the growth of the long chains.

The dominant center-to-center distance between colloids
in these strings, as derived from the first peak in the in-line
distance distribution (not shown), lies at about 2.4 Rg . Hence,
the colloids hardly touch each other, as their interaction en-
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FIG. 11. Histogram of the number of colloids in chains of given lengths,
averaged over four intervals of 1 s, for initially homogeneous suspension of
80 colloids, in a worm-like micellar solution sheared at γ̇ = 15 s−1. The sum
area of all bars at any given time equals the total number of colloids in the
system. The inset shows the number of colloidal string as a function of time.
See the main text for the operational definition of a string. Only strings of
two or more colloids are counted.

ergy is virtually zero at this separation, while at the same time
the space between consecutive colloids is too narrow to ac-
commodate fluid particles, as was confirmed by examining
movies of the system. The latter suggests that depletion inter-
actions may be contributing to the stability of shear-induced
colloidal strings, though we recall that our earlier observa-
tions showed that the depletion interactions at zero shear are
too weak to induce alignment. Combining the average spac-
ing with the box dimensions, we note that the longest possi-
ble chain is expected to contain 10 colloids, well beyond the
longest string observed in our simulations.

The evolutions of the shear stresses Sxy in the pure fluid
and the suspension are plotted in Fig. 12. Since the simula-
tions were started with the expected linear steady state ve-
locity profile, the shear stress in the pure fluid almost im-
mediately reaches its steady state value. The shear stress of
the colloidal suspension initially decays fast, but after ∼5 s
only a very slow decrease remains which appears to con-
verge to a steady level. This transition time roughly coin-
cides with the time it takes for the randomly distributed col-
loids to aggregate into strings, as follows by a comparison of
Figs. 10 and 12, which in combination with the absence of
start-up effects in the pure fluid suggests that colloidal align-
ment reduces the shear stress. The alignment proceeds faster
than under experimental conditions because we have stepped
over the slow evolution from a quiescent fluid to a steady
sheared state, because the colloidal concentration is higher
by about one order of magnitude, and possibly also bene-
fits from the enhanced Brownian motions of the smaller col-
loids. Since the rate of energy dissipation by the sheared fluid
is given by P = Sxyγ̇ Lz, the decreasing shear stress may be
re-interpreted as an evolution of the colloidal suspension to-
wards a steady state requiring minimum power dissipation.
Interestingly, we observed similar relaxations to steady states
of minimum dissipation in several system that we studied re-
cently, including shear-banding of a viscoelastic fluid in the
RaPiD simulations27, 40 and segregation of granules in a ro-
tating drum,47 which tentatively suggests that a reduction of
the dissipation rate may act as a driving mechanism induc-
ing ordering in driven systems. For an extensive discussion
on possible generic physical laws governing non-equilibrium
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FIG. 12. The shear stress Sxy against the time for a worm-like micellar so-
lution containing 80 initially randomly distributed colloids (red), at a con-
stant shear rate of γ̇ = 15 s−1, and for the pure fluid (black). The former
has a higher viscosity because of the suspended colloids, as well as due to
the higher micellar concentration dictated by the constant chemical potential
(see Section IV B).

steady states, and the evolution toward these states, we refer
the reader to the review of Martyushev and Seleznev48 and the
book by Öttinger.49

In our simulations, a sufficiently high shear rate proved
crucial to the shear-induced alignment of colloidal particles,
as we did not observe any spontaneous alignment at shear
rates below 3 s−1. At these low shear rates, it is conceiv-
able that the time scale of string formation exceeds the sim-
ulation time scale of about 20 s. We, therefore, investigated
the stability of pre-assembled chains of colloids at these low
shear rates. Figure 13 shows the projected area Ayz against the
time for simulation boxes prepared with 12 strings of 8 col-
loids each, at an inter-colloid spacing of 2.4 Rg . The area in-
creases approximately linearly in time for shear rates of 1 s−1

and below, including a non-sheared system, and thereby indi-
cates that the colloids gradually disordered at these low shear
rates. At γ̇ = 2 s−1, the area initially increased but then de-
creased again to settle at a somewhat “undecided” level. For
γ̇ ≥ 3 s−1, the projected area fluctuated around a constant
value, slightly higher than the area of the perfectly aligned
initial system, indicating that the alignment is stable at these
high shear rates. These observations are in agreement with ex-
perimental observations of a critical shear rate of about 1 s−1

for large colloidal particles dispersed in the bulk worm-like
micellar solution modeled here.6 In all simulations of the mi-
cellar fluid, with and without colloids, the velocity profile
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tially forming 12 flow-aligned strings, dispersed in polymer solutions at var-
ious shear rates.

V (y) of the flowing fluid was virtually linear, indicating that
colloidal alignment does not require shear banding. This ob-
servation is also in agreement with experiments,6 which in-
dicate that shear-banding can promote alignment but is not a
prerequisite.

D. Colloids in sheared polymer solutions

The preceding study on colloids in a worm-like micellar
solution was repeated for colloids dispersed in the polymer
solution. Following the same procedures, we first placed 30
colloids randomly in the xy-plane and applied a shear flow
of γ̇ = 15 s−1 in the x-direction. This time, however, the
colloids remained homogeneously distributed. We increased
the shear rate stepwise in a set of simulations, but even at
the highest shear rate of γ̇ = 200 s−1 the colloids still did
not align. Next, we distributed 80 colloids randomly through-
out the entire box and ran simulations over the same range
of shear rates. Again, the particles remained randomly dis-
tributed at all applied shear rates up to γ̇ = 200 s−1.

To rule out low diffusivity as a possible cause for the
absence of colloidal chains in the polymer solution, we also
performed simulations on initial configurations of 96 colloids
forming 12 straight lines along the flow direction. The pro-
jected area covered by these colloids gradually increased, see
Fig. 14, indicating that the colloids were diffusing away from
their initial ordered state to a disordered state. In fact, the
misalignment proceeded quicker at higher shear rates, proba-
bly because of shear thinning. From this we learn that, even
though the polymer solution behaves as a shear thinning vis-
coelastic fluid with a thinning-exponent of nearly −1, no or-
dering of particles is to be expected. This observation agrees
with the experimental observation that colloids in this poly-
meric fluid do not align in the bulk (but migrate to the rheome-
ter walls and align there),8, 50 and confirms that bulk align-
ment is limited to a subset of shear-thinning fluids. In con-
trast to the worm-like-suspension, the shear stress and hence
the power dissipation in the polymeric suspension reach their
steady state values already after 0.05 s.

V. CONCLUSIONS

We have performed coarse-grained simulations of col-
loidal particles dispersed in two viscoelastic fluids with
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rheological behaviors typical of semi-dilute solutions contain-
ing polymers and worm-like micelles, respectively, at a vol-
ume fraction of 11% or nearly 15 times the critical overlap
concentration. Each polymeric or micellar chain was repre-
sented by a single particle in RaPiD, enabling simulations
covering large length and time scales; in this study, a stan-
dard desktop processor sufficed to simulate fluid volumes of
0.3 μm3 for 20 s. In order to recover the rheological behav-
ior of the fluids, the particles were endowed with configura-
tion and time-dependent memory effects which qualitatively
describe the entanglement effects responsible for the dynam-
ics of the real chains. This study shows that markedly dif-
ferent rheological behaviours of two shear-thinning fluids are
well reproduced quantitatively by RaPiD simulations, through
the adjustment of a few simulation parameters. For conve-
nience, we endowed here both fluids with identical thermo-
dynamic properties, to specifically concentrate on the impact
of fluid rheology on the ordering of suspended colloids in
sheared bulk suspensions. The simulations showed that the
colloids formed strings along the shear direction in the worm-
like micellar solution, provided the shear rate exceeded 2 s−1,
while the colloids in the polymeric solution remained homo-
geneously dispersed throughout the bulk at all shear rates.
These results are in good agreement with recent experimen-
tal studies in the group of Vermant on colloids dispersed in
the two fluids modeled here, reporting alignment in the bulk
worm-like solution beyond 1 s−1 and disorder in the bulk of
the polymeric solution.6, 8, 50

The simulations indicate that the shear-aligned colloids
are nearly touching, leaving insufficient space for worm-like
micelles to reside between consecutive colloids. While this
suggests that depletion interactions are involved in the col-
loidal alignment, we note that depletion interactions were not
capable of inducing aggregation at low and vanishing shear
rates, nor can these thermodynamic attraction forces explain
the marked difference in colloidal aggregation between micel-
lar and polymeric solutions (since the simulated fluids share
thermodynamic behavior). These results are supported by ex-
periments, with the colloids nearly touching under shear in
the micellar solution but randomly dispersed at low shear
rates in both solutions.6, 50 Hence, we are led to speculate that
the depletion forces are secondary to a still unidentified flow-
induced driving force, which in the bulk micellar solution is
sufficiently strong to overcome Brownian motion but in the
bulk polymer solution is weak or absent. An interesting ob-
servation in this respect is the decreasing power dissipation
by the dispersion concomitant with increasing colloidal align-
ment, which might place this ordering phenomenon within the
wider—yet still incompletely understood—context of dissipa-
tive non-equilibrium steady states.48, 49

An important difference between the simulation ap-
proach advocated here and the approaches taken by most au-
thors studying colloids in viscoelastic fluids13, 20, 21, 51 is that
we do not employ a numerical Navier-Stokes solver to ex-
plicitly calculate the flow field throughout the entire simula-
tion box. The RaPiD approach drastically reduces the com-
putational burden, thereby enabling RaPiD to simulate larger
systems with more colloids and in full three-dimensional
space.

We express the hope that additional studies with the
RaPiD method, by systematically exploring the effects of the
fluid parameters, will help elucidate the intriguing mechanism
behind shear-induced alignment in the bulk as well as at the
walls.
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APPENDIX: FLORY-HUGGINS FREE ENERGY
FOR A SYSTEM OF CHAINS WITH FIXED
CENTRAL SEGMENT

In this Appendix we present the potential of mean force
that we have used in our simulations. Out of all degrees of
freedom in our system we only keep track of the central
monomer of each polymer. The potential of mean force, there-
fore, is the free energy of all polymers for given position of
their central monomers. We will calculate this free energy
using a Landau-de Gennes type of description of inhomoge-
neous systems.

Consider a very large box of volume V containing
Ns solvent molecules and Np polymers each consisting of
p Kuhn lengths. According to the incompressible Flory-
Huggins model the total free energy A may be calculated
according to

A = −kT ln QNs,Np
, (A1)

QNs,Np
=

(
qint

s

�3
s

)Ns
(

qint
p
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p

)pNp (
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)Np(p−1)

× M!
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exp(−βU )�Ns+pNp , (A2)

where M = V/� is the number of cubes of size � into which
the total volume has been divided and z is the coordination
number of the lattice that has been used. Furthermore, qint

s

and qint
p are single particle partition functions accounting for

internal degrees of freedom in each lattice cell, and �s and
�p are the corresponding thermal de Broglie wavelengths. Fi-
nally, U is the average interaction energy
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}
, (A3)

where εij are interaction energies between neighboring cubes
of species i and j . On average the central segments of the
polymers will be homogeneously distributed throughout the
box. Thermal fluctuations around this homogeneous distribu-
tion must be sampled correctly by our simulations. In order to
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achieve this we must calculate the relative probabilities, i.e.,
the relative free energies of such fluctuations. First notice that
if we reshuffle the central segments in order to generate a fluc-
tuation, the number of solvent molecules and the number of
polymers do not change. We may, therefore, eliminate all con-
tributions to the free energies which are linear in the number
of solvent molecules or the number of polymers from further
considerations. We are then left with

A′ = kT Np ln

(
Np

M

)

+ kT Ns ln

(
Ns

M

)
− p2N2

p

M
χ, (A4)

χ = 1

2
βz(εss + εpp − 2εsp), (A5)

where χ is the Flory-Huggins parameter. Next, we notice that
the simulated degrees of freedom take care of

Asim = −kT ln

(
V Np

Np!

)
. (A6)

The free energy of the eliminated degrees of freedom may
therefore be taken to be A′ − Asim, which on neglecting the
terms proportional to Np leads to

A′′ = kTpNp

{
1 − φ

φ
ln(1 − φ) − χφ

}
, (A7)

where we have introduced the volume fraction

φ = p
Np

M
. (A8)

In order to discriminate the various inhomogeneous distribu-
tions of the central segments from one another, we have in-
troduced local densities φi(r) around each particle i. We now
assume that the corresponding (relative) free energies may be
approximated as

�C(r) = kTp

×
Np∑
i=1

{
1 − φi(r)

φi(r)
ln(1 − φi(r)) − χφi(r)

}
,

(A9)

=
Np∑
i=1

kT ap(φi(r)), (A10)

where the second line serves to define ap(φi(r)).
The force acting on each particle can now be expressed

in terms of the local volume fraction as

Fi = −∇iA[ρ] = −∇i

N∑
j=1

ap(φj )

= −
N∑

j=1

dap(φj )

dφj

∂φj

∂ρj

∂ρj

∂ri

, (A11)

which results in a quasi-pairwise interaction (quasi because
the local density does depend on the location of other
particles),

Fi = − 1

ρmax

N∑
j=i

(
dap(φj )

dφj

+ dap(φi)

dφi

)
∂

∂ri

ω(rij ).

(A12)
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