next up previous contents index
Next: The Zimm chain Up: The Rouse chain Previous: Summary

Appendix A

In this appendix we calculate the equilibrium expectation value of Xk2. In Cartesian coordinates the statistical weight of some configuration $\vec{R
}_0,\vec{R}_1,\ldots,\vec{R}_N$ is given by

\begin{displaymath}P(\vec{R}_0,\ldots,\vec{R}_N) = \frac{1}{Z} \exp \{ -\sum_{n=1}^N \frac{3}{
2b^2} (\vec{R}_n-\vec{R}_{n-1})^2 \}
\end{displaymath} (6.77)

Since the transformation to normal coordinates is a linear transformation from one set of orthogonal coordinates to another, the corresponding Jacobian is simply a constant. The argument of the exponential may be written as
$\displaystyle {\sum_{n=1}^N (\vec{R}_n - \vec{R}_{n-1})^2 }$
  = $\displaystyle \vec{R}_0 \cdot (\vec{R}_0 - \vec{R}_1) + \sum_{n=1}^{N-1} \vec{R}_n
\cdot (2\vec{R}_n - \vec{R}_{n-1} - \vec{R}_{n+1})$  
    $\displaystyle + \vec{R}_N \cdot (\vec{R}_N - \vec{R}_{N-1})$  
  = $\displaystyle 4 \sum_{k_1=1}^N \sum_{k_2=1}^N \vec{X}_{k_1} \cdot \vec{X}_{k_2} 4
\sin^2 \left( \frac{k_2\pi}{2(N+1)} \right)$  
    $\displaystyle \sum_{n=0}^N \cos \left( \frac{k_1\pi}{N+1} (n+\frac{1}{2}
) \right) \cos \left( \frac{k_2\pi}{N+1} (n+\frac{1}{2}) \right)$  
  = $\displaystyle 8(N+1) \sum_{k=1}^N \vec{X}_k \cdot \vec{X}_k \sin^2 \left( \frac{k\pi
}{2(N+1)} \right) .$ (6.78)

The statistical weight therefore reads

\begin{displaymath}P(\vec{X}_0,\ldots,\vec{X}_N) = \frac{1}{Z} \exp \left\{ - \f...
... \vec{X}_k \sin^2 \left( \frac{k\pi}{2(N+1)
} \right) \right\}
\end{displaymath} (6.79)

Since this is a simple product of independent Gaussians, all kinds of expectation values may easily be calculated, like for example

\begin{displaymath}\langle \vec{X}_k \cdot \vec{X}_k \rangle = \frac{b^2}{8(N+1)} \frac{1}{
\sin^2 (\frac{k\pi}{2(N+1)}) }
\end{displaymath} (6.80)


next up previous contents index
Next: The Zimm chain Up: The Rouse chain Previous: Summary
W.J. Briels