next up previous contents index
Next: Stochastic processes Up: The Gaussian chain Previous: Appendix B

Appendix C

We shall first show that for small n we may write

 \begin{displaymath}G(\vec{R},\vec{R}^{\prime};n) = \exp \{-n\beta\Phi (\vec{R}) ...
...}} \exp \{ -\frac{3}{2nb^2} (\vec{R}-
\vec{R}^{\prime})^2 \} .
\end{displaymath} (3.50)

Taking the limit for $n \rightarrow 0$ we then easily check Eq. (3.16). In order to prove Eq. (3.50) we first notice that n being small, all Ri in the exponent in Eq. (3.13) are approximately equal to $\vec{R}$, from which it follows that
$\displaystyle { G(\vec{R},\vec{R}';n) = \exp\{-n\beta\Phi (\vec{R})\} \left\{
\frac{3}{2\pi b^2} \right\}^{\frac{3}{2}n} }$
    $\displaystyle \int d^3R_1 \cdots \int d^3R_{n-1} \exp \left\{ - \sum_{i=1}^{n}
\frac{3}{2b^2}(\vec{R}_i -\vec{R}_{i-1})^2 \right\} .$ (3.51)

It is now simply a matter of successively performing the integrals. The simplest way to do this is by induction.
$\displaystyle { \left\{\frac{3}{2\pi b^2}\right\}^{\frac{3}{2}n} \int d^3R_1
\c...
...3R_{n-1} \exp\{-\sum_{i=1}^n \frac{3}{2b^2} (\vec{R}_i -\vec{R}
_{i-1} )^2 \} }$
    $\displaystyle = \left\{\frac{3}{2\pi b^2}\right\}^{\frac{3}{2}} \left\{ \frac{3}{2\pi
(n-1)b^2} \right\}^{\frac{3}{2}} \int d^3R_{n-1}$  
    $\displaystyle \exp \left\{ -\frac{3}{2(n-1)b^2} (\vec{R}_{n-1}-\vec{R}^{\prime})^2 -
\frac{3}{2b^2} (\vec{R}_{n-1}-\vec{R})^2 \right\}$  
    $\displaystyle = \left\{ \frac{3}{2\pi nb^2} \right\}^{\frac{3}{2}} \exp \left\{
- \frac{3}{2nb^2} (\vec{R}-\vec{R}^{\prime})^2 \right\} .$ (3.52)

The first equals sign is the induction step, and the second one is the final proof.

Now look at the Chapman-Kolmogorov equation  (3.14), and take n to be small. Then $G(
\vec{R},\vec{R}^{\prime \prime };n)$ differs from zero only if $\vec{R}
^{\prime \prime }$ is in the neighbourhood of $\vec{R}$. We therefore expand the second factor $G(\vec{R}^{\prime \prime },\vec{R}^{\prime
};N) $ in Eq. (3.14) with respect to $\vec{R}
^{\prime \prime }$.

 
    $\displaystyle G(\vec{R}^{\prime \prime },\vec{R}^{\prime };N)=G(\vec{R},\vec{R}
^{\prime };N)$  
    $\displaystyle +\sum_{\alpha }(R_{\alpha }^{\prime \prime }-R_{\alpha })\frac{\partial
}{\partial R_{\alpha }}G(\vec{R},\vec{R}^{\prime };N)$  
    $\displaystyle +\frac{1}{2}\sum_{\alpha }\sum_{\beta }(R_{\alpha }^{\prime \prim...
...l ^{2}}{
\partial R_{\alpha }\partial R_{\beta }}G(\vec{R},\vec{R}^{\prime };N)$ (3.53)

where $R_{\alpha }$ denotes the $\alpha $'th Cartesian component of $\vec{R}$. Introducing Eqs. (3.50) and (3.53) into ( 3.14) we get

\begin{displaymath}G(\vec{R},\vec{R}^{\prime };N+n)=\exp \{-n\beta \Phi (\vec{R}...
...{6}nb^{2}\nabla _{\vec{R}}^{2}\}G(\vec{R},\vec{R}^{\prime };N)
\end{displaymath} (3.54)

where we have used
    $\displaystyle \left\{ \frac{3}{2\pi nb^{2}}\right\} ^{\frac{3}{2}}\int d^{3}R^{...
...eta })\exp \left\{ -\frac{3}{2nb^{2}}(\vec{R}-\vec{R}^{\prime
\prime })\right\}$  
    $\displaystyle =\frac{1}{3}nb^{2}\delta _{\alpha \beta }$ (3.55)

For small n, we expand the exponent

\begin{displaymath}G(\vec{R},\vec{R}^{\prime };N+n)=\{1-n\beta \Phi (\vec{R})\}\...
...}
nb^{2}\nabla _{\vec{R}}^{2}\}G(\vec{R},\vec{R}^{\prime };N).
\end{displaymath} (3.56)

Collecting terms of order n, and using

\begin{displaymath}\frac{\partial }{\partial N}G(\vec{R},\vec{R}^{\prime
};N)=\l...
...ec{R},\vec{R}^{\prime };N+n)-G(
\vec{R},\vec{R}^{\prime };N)\}
\end{displaymath} (3.57)

we finally arrive at Eq. (3.15).


next up previous contents index
Next: Stochastic processes Up: The Gaussian chain Previous: Appendix B
W.J. Briels