Next: Normal mode analysis
Up: The Rouse chain
Previous: Introduction
We now concentrate on one bead, say bead no. n, while keeping all the
other beads fixed. Its equilibrium distribution is given by
![\begin{displaymath}G_{\mathrm{eq}}(
\vec{R}_{n})=C\exp \{-\beta \frac{3k_{B}T}{2...
...\beta \frac{3k_{B}T}{2b^{2}}(\vec{R}_{n+1}-\vec{R}_{n})^{2}\}.
\end{displaymath}](img687.gif) |
(6.1) |
According to Eq. (4.30) and Eq. (4.27) the
Langevin equation describing the motion of the bead then is, with
![\begin{displaymath}\frac{d\vec{R}_{n}}{dt}=-\frac{3k_{B}T}{\gamma b^{2}}(2\vec{R}_{n}-\vec{R}
_{n-1}-\vec{R}_{n+1})+\vec{f}_{n}
\end{displaymath}](img689.gif) |
(6.2) |
where we have assumed that
is independent on
.
The same reasoning may be applied to all other beads, leaving us with the
equations of motion
![$\displaystyle \frac{d\vec{R}_{0}}{dt}$](img692.gif) |
= |
![$\displaystyle -\frac{3k_{B}T}{\gamma b^{2}}(\vec{R}_{0}-\vec{R}
_{1})+\vec{f}_{0}$](img693.gif) |
(6.3) |
![$\displaystyle \frac{d\vec{R}_{n}}{dt}$](img694.gif) |
= |
![$\displaystyle -\frac{3k_{B}T}{\gamma b^{2}}(2\vec{R}_{n}-\vec{R}
_{n-1}-\vec{R}_{n+1})+\vec{f}_{n}$](img695.gif) |
(6.4) |
![$\displaystyle \frac{d\vec{R}_{N}}{dt}$](img696.gif) |
= |
![$\displaystyle -\frac{3k_{B}T}{\gamma b^{2}}(\vec{R}_{N}-\vec{R}
_{N-1})+\vec{f}_{N}$](img697.gif) |
(6.5) |
![$\displaystyle \langle \vec{f}_{n}(t)\cdot \vec{f}_{m}(t^{\prime })\rangle$](img698.gif) |
= |
![$\displaystyle 6D\delta
_{n,m}\delta (t-t^{\prime })$](img699.gif) |
(6.6) |
Eq. (6.4) applies when
.
Before starting to analyse these equations in the next section, let us
derive one simple result:
So
,
which is perfectly understandable.
Next: Normal mode analysis
Up: The Rouse chain
Previous: Introduction
W.J. Briels