Next: Some probabilities
Up: The Rotational Isomeric State
Previous: The model
The RIS model can be treated in considerable detail. As a first step we
calculate the partition function
![\begin{displaymath}Z=\sum_{\varphi _{2}\in \{t,g^{+},g^{-}\}}\cdots \sum_{\varph...
...^{-}\}}\exp \{-\beta E(\varphi _{2},\ldots ,\varphi _{N-1})\}.
\end{displaymath}](img21.gif) |
(1.3) |
Introducing the energy (1.2) and using a short hand notation for
the summations we get
![\begin{displaymath}Z=\sum_{\varphi _{2}}\cdots \sum_{\varphi _{N-1}}e^{-\beta \e...
...rphi _{2},\varphi _{3})\cdots t(\varphi
_{N-2},\varphi _{N-1})
\end{displaymath}](img22.gif) |
(1.4) |
![\begin{displaymath}t(\varphi _{i-1},\varphi _{i})=\exp \{-\beta \epsilon _{1}(\varphi
_{i})-\beta \epsilon _{2}(\varphi _{i-1},\varphi _{i})\}.
\end{displaymath}](img23.gif) |
(1.5) |
We recognize a sequence of matrix products in Eq. (1.4), which
makes it possible to write
![\begin{displaymath}Z=\sum_{\varphi _{2}}\sum_{\varphi _{N-1}}e^{-\beta \epsilon _{1}(\varphi
_{2})}[T^{N-3}]_{\varphi _{2},\varphi _{N-1}}
\end{displaymath}](img24.gif) |
(1.6) |
T is a matrix with elements
.
In the case
of polyethylene it is given by
|
|
![$\displaystyle \begin{array}{ccc}
t & g^{+} & g^{-}
\end{array}$](img26.gif) |
|
|
|
![$\displaystyle T=
\begin{array}{c}
t \\
g^{+} \\
g^{-}
\end{array}\left(
{\beg...
... & \sigma & \sigma \\
1 & \sigma & 0 \\
1 & 0 & \sigma
\end{array}}
\right) ,$](img27.gif) |
(1.7) |
where
and
except for
.
The zero of
energy has been chosen such that
.
Eq. (1.6) may also be written as
![\begin{displaymath}Z = \left(
{\begin{array}{ccc}
1 &\sigma &\sigma
\end{array}...
...{\left(
{\begin{array}{c}
1 \\ 1 \\ 1
\end{array}}
\right)}
.
\end{displaymath}](img32.gif) |
(1.8) |
Moreover, using
![\begin{displaymath}\left(
{\begin{array}{ccc}
1 &\sigma &\sigma
\end{array}}
\right) = \left(
{\begin{array}{ccc}
1 &0 &0
\end{array}}
\right) T
\end{displaymath}](img33.gif) |
(1.9) |
we may write
with
and
.
It is useful to decompose the matrix T in terms of its eigenvectors:
![\begin{displaymath}TA = A\Lambda
\end{displaymath}](img36.gif) |
(1.11) |
![\begin{displaymath}T = A\Lambda A^{-1} \equiv A\Lambda B
\end{displaymath}](img37.gif) |
(1.12) |
where
is the diagonal matrix containing the eigenvalues of T.
For notational convenience we have introduced
B = A-1.
Eq. (1.12) may be written like
![\begin{displaymath}T = \sum_i \lambda_i A_i B_i^T
\end{displaymath}](img39.gif) |
(1.13) |
where the Ai are the columns of A and the BiT the rows of B.
Then
TN |
= |
![$\displaystyle (A\Lambda A^{-1}) (A\Lambda A^{-1}) \cdots (A\Lambda A^{-1}) = A
\Lambda^N A^{-1} = A \Lambda^N B$](img40.gif) |
|
TN |
= |
![$\displaystyle \sum_i \lambda_i^N A_i B_i^T.$](img41.gif) |
(1.14) |
The partition function then reads
![\begin{displaymath}Z = \sum_i \lambda_i^{N-2} (Y^T A_i) (B_i^T X) = \sum_i c_i \lambda_i^{N-2}.
\end{displaymath}](img42.gif) |
(1.15) |
In practice we are usually interested in the free energy per monomer
![\begin{displaymath}\frac{1}{N}\ln Z=\frac{N-2}{N}\ln \lambda _{\mathrm{max}}+\fr...
...lambda _{i}}{\lambda _{\mathrm{max}}}
\right) ^{N-2}\right\} ,
\end{displaymath}](img43.gif) |
(1.16) |
where
is the largest eigenvalue of T. In the
limit of N going to infinity the second term goes to zero
![\begin{displaymath}\lim_{N\rightarrow \infty }\frac{1}{N}\ln Z=\ln \lambda _{\mathrm{max}}.
\end{displaymath}](img45.gif) |
(1.17) |
In the case of matrix (1.7) one easily calculates the
eigenvectors. From
one gets
![\begin{displaymath}\lambda _{\mathrm{max}}=\frac{1}{2}\{(1+\sigma )+\sqrt{1+6\sigma +\sigma ^{2}
}\}.
\end{displaymath}](img48.gif) |
(1.18) |
Next: Some probabilities
Up: The Rotational Isomeric State
Previous: The model
W.J. Briels