next up previous contents index
Next: Some probabilities Up: The Rotational Isomeric State Previous: The model

The partition function

The RIS model can be treated in considerable detail. As a first step we calculate the partition function 

\begin{displaymath}Z=\sum_{\varphi _{2}\in \{t,g^{+},g^{-}\}}\cdots \sum_{\varph...
...^{-}\}}\exp \{-\beta E(\varphi _{2},\ldots ,\varphi _{N-1})\}.
\end{displaymath} (1.3)

Introducing the energy (1.2) and using a short hand notation for the summations we get

 \begin{displaymath}Z=\sum_{\varphi _{2}}\cdots \sum_{\varphi _{N-1}}e^{-\beta \e...
...rphi _{2},\varphi _{3})\cdots t(\varphi
_{N-2},\varphi _{N-1})
\end{displaymath} (1.4)


\begin{displaymath}t(\varphi _{i-1},\varphi _{i})=\exp \{-\beta \epsilon _{1}(\varphi
_{i})-\beta \epsilon _{2}(\varphi _{i-1},\varphi _{i})\}.
\end{displaymath} (1.5)

We recognize a sequence of matrix products in Eq. (1.4), which makes it possible to write

 \begin{displaymath}Z=\sum_{\varphi _{2}}\sum_{\varphi _{N-1}}e^{-\beta \epsilon _{1}(\varphi
_{2})}[T^{N-3}]_{\varphi _{2},\varphi _{N-1}}
\end{displaymath} (1.6)

T is a matrix with elements $t(\varphi _{i-1},\varphi _{i})$. In the case of polyethylene  it is given by


 
    $\displaystyle \begin{array}{ccc}
t & g^{+} & g^{-}
\end{array}$  
    $\displaystyle T=
\begin{array}{c}
t \\
g^{+} \\
g^{-}
\end{array}\left(
{\beg...
... & \sigma & \sigma \\
1 & \sigma & 0 \\
1 & 0 & \sigma
\end{array}}
\right) ,$ (1.7)

where $\sigma =\exp \{-\beta \epsilon _{1}(g^{+})\}=\exp \{-\beta \epsilon
_{1}(g^{-})\}$ and $\epsilon _{2}(\varphi _{i-1},\varphi _{i})=0$ except for $\epsilon _{2}(g^{+},g^{-})=\epsilon _{2}(g^{-},g^{+})=\infty $. The zero of energy has been chosen such that $\epsilon _{1}(t)=0$.

Eq. (1.6) may also be written as

\begin{displaymath}Z = \left(
{\begin{array}{ccc}
1 &\sigma &\sigma
\end{array}...
...{\left(
{\begin{array}{c}
1 \\ 1 \\ 1
\end{array}}
\right)}
.
\end{displaymath} (1.8)

Moreover, using

\begin{displaymath}\left(
{\begin{array}{ccc}
1 &\sigma &\sigma
\end{array}}
\right) = \left(
{\begin{array}{ccc}
1 &0 &0
\end{array}}
\right) T
\end{displaymath} (1.9)

we may write

Z = YT TN-2 X (1.10)

with $Y^T = (
\begin{array}{ccc}
1 & 0 & 0
\end{array} )$ and $X^T = (
\begin{array}{ccc}
1 & 1 & 1
\end{array})$.

It is useful to decompose the matrix T in terms of its eigenvectors:

\begin{displaymath}TA = A\Lambda
\end{displaymath} (1.11)


 \begin{displaymath}T = A\Lambda A^{-1} \equiv A\Lambda B
\end{displaymath} (1.12)

where $\Lambda$ is the diagonal matrix containing the eigenvalues of T. For notational convenience we have introduced B = A-1.

Eq. (1.12) may be written like

\begin{displaymath}T = \sum_i \lambda_i A_i B_i^T
\end{displaymath} (1.13)

where the Ai are the columns of A and the BiT the rows of B. Then
TN = $\displaystyle (A\Lambda A^{-1}) (A\Lambda A^{-1}) \cdots (A\Lambda A^{-1}) = A
\Lambda^N A^{-1} = A \Lambda^N B$  
TN = $\displaystyle \sum_i \lambda_i^N A_i B_i^T.$ (1.14)

The partition function then reads

\begin{displaymath}Z = \sum_i \lambda_i^{N-2} (Y^T A_i) (B_i^T X) = \sum_i c_i \lambda_i^{N-2}.
\end{displaymath} (1.15)

In practice we are usually interested in the free energy  per monomer

\begin{displaymath}\frac{1}{N}\ln Z=\frac{N-2}{N}\ln \lambda _{\mathrm{max}}+\fr...
...lambda _{i}}{\lambda _{\mathrm{max}}}
\right) ^{N-2}\right\} ,
\end{displaymath} (1.16)

where $\lambda _{\mathrm{max}}$ is the largest eigenvalue of T. In the limit of N going to infinity the second term goes to zero

\begin{displaymath}\lim_{N\rightarrow \infty }\frac{1}{N}\ln Z=\ln \lambda _{\mathrm{max}}.
\end{displaymath} (1.17)

In the case of matrix (1.7) one easily calculates the eigenvectors. From $\det (T-\lambda I)=0$ one gets

\begin{displaymath}(\lambda ^{2}-\lambda (1+\sigma )-\sigma )(\sigma -\lambda )=0
\end{displaymath}


\begin{displaymath}\lambda _{\mathrm{max}}=\frac{1}{2}\{(1+\sigma )+\sqrt{1+6\sigma +\sigma ^{2}
}\}.
\end{displaymath} (1.18)


next up previous contents index
Next: Some probabilities Up: The Rotational Isomeric State Previous: The model
W.J. Briels